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SUMMARY

The problem dealt with in this paper consists in finding a mechanism
of plasma acceleration up to energies prevailing in the region of Earth's
orbit. 1Its selection is based upon the results of quantitative analysis of
very simple models of plasma flow from the Sun, provided they meet a series
of conditions relative to relationships between solar corona and interpla-
netary plasma; here laminar conditions of the flux intervene, which allow
the fulfilment of the gas-dynamics approximation. Several models are dis-
cussed, and within the model utilized it is assumed that the energy for the
acceleration of coronal plasma is supplied by a heat source emerging as a
result of dissipation of mechanical motions.

*

1. The development of a more or less complete theory
on plasma outflow from the Sun (solar wind theory) is virtual-
ly impossible owing to the lack of sufficient experimental data
on coronal plasma properties within the 1.03-2 R, region and
of an adequate mechanism of solar corona heating, as well as
because of mathematical difficulties arising in the solution
of inhomogeneous and nonstationary problems of plasma motion
However, at the present time, data on coronal and, especially,
interplanetary plasma, obtained by astrophysical, radiophysi-
cal and rocket methods, are apt to constitute sufficiently
reliable basis for designing outflow models that would impart
at least some of the properties of the plasma flowing from the
Sun [1-5]. One of the most remarkable properties of the inter-
planetary plasma is that, within the region of the Earth's
orbit, the ions attain considerable and virtually radially
directed velocites when solar activity is at its lowest. If,
along with this, one considers that at the maximum tempera-
ture level the hydrodynamic energy flux in the solar corona
which is determined by expression 4@},,,12(@.'*25.%1_ &i,@io) is nega-
tive, while the energy transfer by molecular thermal conduc-
tivity is zero, there arises one of the most interesting prob-
lems of the theory on plasma outflow from the Sun. This prob-
lem consists in finding the mechanism of plasma acceleration
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up to energies existing in the region of the Earth's orbit.
The present work is dealing precisely with this problem,

The selection of plasma acceleration mechanism is based on
the results of a gquantitative analysis of very simple models
of plasma outflow from the Sun*. These models were designed
on the basis of observation data and under the following
assumptions:

a) The solar corona and the 1nterplanetary plasma are
parts of a dynamic formation occurring as a consequence of
a certain activity of the Sun;

b) the thermal source heating the solar corona assures
the emergence of energies observed in the interplanetary
plasma;

c) there exists in the solar corona a level at which
the entire matter participates in the laminar flow and the
condition for the applicability of a gas-dynamical approx1—
mation are fulfilled within a sufficiently wide region con-
taining this level,***

Inasmuch as direct experimental data on the corona
level in which the outflow conditions may be considered
laminar are 1linexistent, its selection was based on the
data of radar observations of the Sun [3] and on the density
distribution in the corona [6]. On the basis of the spread
of velocities, of density distribution and of the total
flux of the outflowing plasma, it is logical to place the
level at which laminar conditions are formed within the
1.8 - 2.0 R, range. Naturally, within the framework of the

* Even with the use of up-to-date computers a quantitative
investigation is possible only in the case of simplest models.

** Probably, beyond the investigated level the outflow con-
ditions are slightly turbulent; however, if one ignores the

effect of Reynolds stresses on pulse and energy fluxes (which,
on the basis of rocket measurements, may be done within the

region of the Earth's orbit) then the mass, pulse and energy
transfer equations coincide with the outflow equations under
laminar conditions.

%*%** It should be noted that our assumptions exclude models
which consider the interplanetary plasma as the manifestation
at great distances of fluxed or clusters of particles with
energies of several kev whose occurrence is due to solar cor-
puscular activity and which exist on the corona alongside a

hot but virtually motionless plasma.



investigated models it is impossible to study the region of
formation of laminar conditions inasmuch as the mass transfer
mechanisms postulated in the model and existing in nature.

It will be possible to design a solar corona—lnterplanetary
plasma model with initial level in the region of the corona
temperature maximum, only after determining the mass transfer'
mechanism with the 1.05 - 1.80 R, corona region.

In describing plasma behavior in the region of laminar
conditions, we used equations descrlblng the stationary and
spherically-symmetrical plasma outflow in a two-temperature
approximation [7]. Following integration of the continuity
equation and under the assumptlon of guasineutrality, the
initial system of equations in dimensionless variables takes
the following form
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In the system of equations (1) use was made of the dimension-
less variables
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and of the dimensionless parameters
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P;, are respectively the hydrodynamic plasma veloc1ty, the

temperature and den51ty of electrons and ions at the initial
levle, m; is the mean ion mass, m=M:*Mi ang I, bnﬁrm)? Ce Mo
The energy equations of system (1) céntain volumetrlc heat
sources with dimensionless strenghts “d% and LQu .

At relatively small nonisothermicities in system (1)
there is a small parameter (/7 y’ The solution of system (1)
may be sought in the form of an asymptotic series by powers
of this parameter
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where Y is any one of the functions determined by system (1).
The equations for the zero terms of series (4) can be written
in the form :
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(It should be borne in mind that ) 'Q; Ql , contained in (5)
are the zero terms of series (4); but, inasmuch as we will
limit our investigation to precisely the zero-order appro-
ximation, these symbols will cause no ambiguity). In analy-
zing the results of the integration of system (5), it should
be borne in mind that they are valid for describing the flows
only if inequalities
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which are the conditions under which the gas-dynamical appro-
ximation is applicable for the description, are fulfilled.=*
The system of Egs. (5) contains four dimensionless parameters
R, R’ A ’@; and two functions g.® and ¢ ¢; , which

determine the volumetric strength of the heat source which
should be set in order to achieve specific results. As regards
the dimensionless parameters, the range of their possible values
can be evaluated on the basis of observation data, while the
experimental information on the power of heat sources is vir-
tually inexistent.

2. Inasmuch as the hydrodynamic outflow model proposed
by Parker meets virtually insurmountable difficulties [8,9]
and as in an equal-temperature approximation a consistent
designing of a model that would take into account the thermal
conductivity and the viscosity is impossible, we have adopted
(5)for the initial system which describes the plasma outflow
without the assumption of equality of electron and ion tempera-
tures,** Moreover, if one bears in mind that in the region of
laminar conditions the volumetric heat sources are absent [12]

* Relations de and d; are considered to be the regional
Knudsen numbers and if they considerably exceed 1, the out-
flow should be considered as being under collisionless con-
ditions. The dimensionless parameters dy and d, determine
the conditions of applicability of the expressions used in
(1) for energy and impulse transfer on account of chaotic
electron and ion motionms.

**% According to observation data, the dimensionless parameters
of system (5) cannot be considered small and any contractions
of the system are gedmissible.



it is possible to integrate the energy equation
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where E, is the integration constant which is equal to the
energy at the initial level.

Eliminating Y and f$E+n3%* and taking into consideration
integral (7), system (5) is easily reduced to a form which is
convenient for numerical integration
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In spite of a number of simplifying assumptions, the system
of equations describing the outflow in a different-temperature
approximation proves to be too complex for solutions by ana-
lytical means. Therefore, all the information on the proper-
ties of solutions of system (8) was determined by numerical

methods. To analyze the structure of integral curves of
system (8) we used the values of dimensionless parameters
compiled in tables I, II, and III.

(The values of dimensionless parameters with Ty, = 1 were
obtained with the use of the following quantities charac-
terizing the coronal and interplanetary plasma

. .
r=477R , To=169-10°4  n=3-10°"%n®, m-os2m, ,

v=215R, , I)=482-10 e, ;=330 Yhon | T, =10" K



TABLE I
-1 - o
T | PRe Ra A | &~ | ag
1,50 4,18 117,21 8,17 | 1,63 | 4,88
1,25 2,85 74,17 3,80 | 1,84 | 8,83
1,20 2,40 87,07 8,96 | 1,82 | 8,74 .
1,10 1,88 54,08 4,82 | 2,09 | 7.87
1,00 1,52 42,58 4,75 | 2,30 | 8,88
0,80 1,17 82,66 528 | 2,62 | 10,38
0,80 0,87 24,83 5,94 | 2,88 | 12,39
0,75 0,74 20,70 6,34 | 8,07 | 18,65
0,70 0,62 17,42 8,78 | 8,20 | 15,14
0,667 | 0,55 15,48 ‘7,12 | 8,45 | 18,28
0,623 | 0,47 18,14 7,60 | 8,83 | 17,98
10,588 | 0,40 11,27 8,08| 8,81 | 18,64
TABLE II
1, RZ R A ¢ | Qi
0,30 5,00 191,15 | 4,75 2,30 8,88
0,75 2,00 56,73 ’ ’ ’
1,00 1,52 42,53 ’ ’ ’
1,50 1,00 38,33 ’ ’ r
3,00 0,50 14,18 ’ g ’
4,00 0,38 10,83 ’ " v
8,00 0,28 7,08 v v ’
TABLE III
T”/ 720 R‘—!‘o eo-l A € a;;
0,78
1-1° 0,60 1,62 42,53 |4,75 |2,30| 8,86
o o 0,26
0,75
=410 0,50 4,56 127,59 | * y :
e 0,26
0,75
. 0,50 7,08 212,56 | * - ’
174, 0,26




The numerical integration of the system of equations (8)
with dimensionless parameters presented in tables I, II and
III is shown in Fig. 1, 2 and 3 (the integration was carried
out at identical initial conditions for various groups of
dimensionless parameters ,-01? , Te=Ti~f, u,=044% at x={ .)

Depending upon the dimensionless parameters of the problem,
the solutions of system (8) belong to one of the two following
types: the first type includes solutions with non zero electron
temperature and with variations in the independent variable
within the entire range; the second contains solutions with
electron temperature becoming zero at the terminal distance
from the initial level.* For a detailed analysis of each of
the indicated types of solutions, integral curve families (pa-
rameter W,) were obtained with the following sets of dimension-
less parameters

I. Ru=265, R'=7417, A=380, Emi84, Q;l-633.
I1. Re=026,R:=708, A=475, €=230, Q. =336.
The obtained results are shown in Fig.4 and 5.

Analysis of the results of numerical integration makes it
possible to ascertain the following special features of solutions
of system (8). For the set I of parameters there are three types
of hydrodynamic velocity dependence on distance: 1) monotonic
variation with smooth transition through sound velocity and an
outlet to an almost linear growth for great x; 2) nonmonotonic
variation with a maximum and minimum smooth transition through
sound velocity and an outlet to an almost linear growth for
great Xx; 3) nonmonotonic variations with one maximum and a sub-
sonic velocity everywhere.**

* Inasmuch as it was found to be impossible to separate ana-
lytically the regions of parameter values at which solutions
of specific type take place, the problem of the nature of the
solutions for each specific group of parameters was solved by
numerical integration of system (8),

** Inasmuch as these conclusions were reached making use of
the numerical integration of system (8), it is obvious that
they are correct for the terminal distances from the initial
level. The nature of individual integration curves may change
with the increase of the integration range; however, their ge-
neral structure is preserved (Fig. 8a and 8c). Nevertheless,
we have no reasons to consider that the aforementioned special
features are preserved up to any distances from the intial
level.
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Solutions at an electron temperature becoming
zero at the terminal level.
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The electron temperature underwent only slight variations
for any dependence W(x) whereas variations of ion temperature
were substantial at least for W(x) with a smooth transition
through sound velocity. One of the most important properties
of solutions with nonzero electron temperature is the monotonic
increment of the Knudsen number for electrons. The integration
of a large number of variants admitting this type of solutions
shows that, as a rule, within the region where the gas-dynamical
approximation is disrupted, there takes place the inequality
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Dependence of the nature of solutions on
nonisothermicity at the initial level.

de > d;.* In case of set IT of parameters, system (8) has
solutions with an electron temperature becoming zero at the

* When conditions dg >> 1 is fulfilled, collisions cannot ensure
the existence of locally Maxwellian distribution for electrons;
this is why the results of calculations of d¢ implying only slight
deviations from the Maxwellian distribution are meaningless

(d¢ << 1 for the majority of the integrated variants.)
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terminal distance from the initial level. The local Knudsen
number for electrons varies nonmonotonically and has a maximum
between the initial level and the level where electron tempera-
ture becomes zero. Investigation of various types of this
variant shows that in the majority of cases, in the region
where the gas-dynamical approximation is disturbed, d; > d..

Alongside with the dimensionless parameters of the problem,
the structure of the integral curve depends[#*] at the initial
level on the quantity U,. Therefore, we have studied the sensi-
tivity of the solutions to U, variations. Fig. 8 presents the
results of integration of the system of Eqgs. (8) for various U,,
but, with an identical set of dimensionless parameters, (R[=y52,
Pol=4253 , A=4v5 t.=230 , R;1=888), wherefrom it can be concluded

that the sensitivity of the solutions to U, is slight.

[*]1[This sentence is obviously incomplete, in the original Russian
and the verb "depends" had to be inserted to make sense.]
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Dependence of the nature of the
solutions on the initial velocity.

3. In our opinion, the results of integration of the
system of Egqs. (8) with the parameters presented in tables
I, IT and IIXI, are convincing evidence of the inconsistency
of the gas-dynamical approximation for the description of
plasma outflow from the Sun. This means that the study of
the outflow is possible only within the framework of dynamic
models with a terminal radius of the region of frequent col-
lisions. The results of the integration of system (8) suggest
the possibility of designing the following dynamic models:
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a) a dynamic model with terminal radius of the region
of frequent collisions for electrons and uniform applicability
of gas-dynamic's approximation for ionms.

b) a dynamic model with a terminal radius of the region
of frequent collisons for ions and a uniform applicability of
gas-dyna-ical approximation for electrons.

¢) a dynamic model with a terminal radius for both
components. Here two variants are possible: in the first
the radius of the region of frequent collisions for the elec-
trons is larger than for ions, in the second it is the opposite.

To solve the problem of the model describing plasma out-
flow from the Sun, it is necessary to have accurate values for
the dimensionless parameters of system (8) and the values of
variables at the initial level. Inasmuch as at the present
time the observation data do not yield these values with accu-
racy, in selecting the model we took advantage of the combi-
nation of well known data and of the singularities of the ac-
celeration mechanism of the outflowing plasma. Thus, the first
model had to be abandoned because observation data had indicated
that the conditions under which the gas-dynamics approximation
for the ions could be applied, were disrupted. As regards the
second model and the first variant of the third model, they are
in contradiction with the existence for the different ion com-
ponents of directional velocities identical in magnitude ([5].

Therefore, the results of plasma outflow analysis in a
hydrodynamic approximation and rocket observation data on inter-
planetary plasma lead us to the following conclusion: in des-
cribing plasma outflow from the Sun use should be made of a dy-
namic model with a terminal radius of the region of frequent
collisions for both components, whereupon this radius of
frequent collisions must be larger for ions than for electrons.
It is obvious that when investigating this model the solution
of kinetic plasma equations is prerequisite under conditions
when the collision frequency varies within limits in which the
system of plasma equations does not contain a uniformly small
parameter in the entire investigated region. Owing to the lack
of effective methods for resolving kinetic equations under the
required conditions, it is impossible at present to carry out
a quantitative investigation of this model of plasma outflow
from the Sun.

4. The foregoing analysis of the various outflow models
makes it possible to provide at least a qualitative answer to
the problem of the acceleration mechanism of plasma outflow from
the Sun. By its very nature it is a plasma mechanism first of all¥

* Contrary to Parker's hydrodynamic acceleration mechanism the
essential role in the plasma mechanism is played by energy trans-
fer of heat conductivity precisely in the light component.
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and actually it is a mechanism transforming the heat conduc-
tivity flux of electron energy into a hydrodynamic flux of
ions. In the region of frequent collisions this transformation
takes place in two ways: by energy transfer at the expense of
electron-ion collisions with power

Q.. =03 737(” “) (9)

which is equivalent to the volumetric heat source on the ion
component and the work of the ambipolar electric field forces

with strenght
dwr {o _
Ao (T 20 o 3Ee- i) (10)

When the gas~dynamical approximation is violated, the
role of energy transfer due to electron-ion collisions becomes
negligibly small and the acceleration of the ion component pro-
ceeds mainly at the expense of the existence of the ambipolar
electric field. The magnitude of this field depends on the
conditions of electrons' motion. In the case when the hydro-
dynamic approximation can be uniformly applied to electrons,
the magnitude of the strenght of ambipolar field forces is
determined by formula (10). When the conditions for the ap-
plicability of gas-dynamical approximation are disrupted, the
ambipolar electric field strength is determined by substantial
variation of the electron distribution function in the transition
layer. Prior to the transition layer it is locally Maxwellian
with slight deviations ensuring the existence of energy transfer
" by thermal conductivity. After the transition layer, the electron
distribution functionis essentially non-Maxwellian permitting
only convective energy transfer. Unfortunately, the mathematical
difficulties that arise in investigations of the electron distri-
bution function in the transition layer make it impossible to
formulate a strict demonstration of the existence of this accele-
ration mechanism and to derive an expression for the ambipolar
field strenght.

5. Within the framework of the applied model, it is assumed
that the energy for coronal plasma acceleration is provided by a
heat source which is initiated by the dissipation of mechanical
motions. For a certain angle of directions a local increase in
the power of the heat source may result in the occurrence of
higher velocities. However, within the framework of the investi-
gated mechanism and in spite of the existence of a collisionless
region, the occurrence of two or more interpenetrating plasma
fluxes with differently oriented velocities cannot be expected.
Observations of interplanetary plasma in the region of the Earth's
orbit by means of rocket-borne equipment bear evidence of the
existence of fluxes are velocities different in magnitudes. The
solutions with these solar wind peculiarities could emerge within .
the framework of a model taking into account, alongside with heat
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sources, the existence of plasma clusters arising as a con-
sequence of some corpuscular activity of the Sun.*

To conclude, the author considers it his pleasant duty

to thank I.M. Dagkesamanskaya and M.P. Yachina for their
great help in formulating this work.

* x * THE END * * *
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Sensitivity of solutions to kUo
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